Leave Your Message
Products Categories
Featured Products

AAAC EN 50182 DIN 48201 All Aluminum Alloy Conductor

Execution standard: BS EN 50182  (Old Standard: DIN 48201)

Material: AAAC adopts 6201-AL3 aluminum-magnesium-silicon alloy material.

Product advantage:
Thanks to their high strength, aluminum alloy stranded conductors reduce the number of towers needed during installation, cutting down costs associated with tower materials and land usage effectively.

AAC (All-Aluminum Alloy Conductor) is a robust transmission solution crafted entirely from high-strength aluminum alloy.  It balances superior conductivity with enhanced mechanical resilience, resisting corrosion and fatigue effectively—ideal for medium to high-voltage lines in coastal, industrial, or harsh weather zones.

    Product application

    AAAC (All-Aluminum Alloy Conductor) is a high-performance alternative for power transmission, constructed from premium aluminum alloy to withstand mechanical stress. It outperforms pure aluminum in durability, thriving in coastal or industrial settings where corrosion is a concern, while ensuring consistent power delivery over extended spans.
    These conductors excel in mountainous or valley-crossing transmission projects, where their high tensile strength allows for longer spans between supports, reducing the need for excessive infrastructure.

    AAAC Standard: EN 50182  (Old Standard: DIN 48201)

    Aluminum Alloy Conductor(AAAC)
    Code Name Old Code Name Sectional Area Wire Diameter&Stranding Overall Diameter Nominal Breaking Load Linear Mass Maximum Resistance at 20℃ Modulus of elasticity Coefficient of linear expansion Current-carrying capacity
    mm2 mm No. mm kN kg/km Ω/km N/MM2 1/K A
    16-AL3 16 15.9 1.7 7 5.1 4.69 43.5 2.0701 60000 2.3x10-5 105
    24-AL3 25 24.2 2.1 7 6.3 7.15 66.4 1.3566 60000 2.3x10-5 135
    34-AL3 35 34.4 2.5 7 7.5 10.14 94.1 0.9572 60000 2.3x10-5 170
    49-AL3 50 49.5 3 7 9 14.6 135.5 0.6647 60000 2.3x10-5 210
    48-AL3 50 48.3 1.8 19 9 14.26 133.0 0.6841 57000 2.3x10-5 210
    66-AL3 70 65.8 2.1 19 10.5 19.41 181.1 0.5026 57000 2.3x10-5 255
    93-AL3 95 93.3 2.5 19 12.5 27.51 256.6 0.3546 57000 2.3x10-5 320
    117-AL3 120 117.0 2.8 19 14 34.51 321.9 0.2827 57000 2.3x10-5 365
    147-AL3 150 147.1 2.25 37 15.75 43.4 405.8 0.2256 57000 2.3x10-5 425
    182-AL3 185 181.6 2.5 37 17.5 53.58 500.9 0.1827 57000 2.3x10-5 490
    243-AL3 240 242.5 2.25 61 20.25 71.55 669.9 0.1373 55000 2.3x10-5 585
    299-AL3 300 299.4 2.5 61 22.5 88.33 827.0 0.1112 55000 2.3x10-5 670
    400-AL3 400 400.1 2.89 61 26.01 118.04 1105.2 0.0832 55000 2.3x10-5 810
    500-AL3 500 499.8 3.23 61 29.07 147.45 1380.5 0.0666 55000 2.3x10-5 930
    626-AL3 625 626.2 2.96 91 32.56 184.73 1730.5 0.0534 55000 2.3x10-5 1075
    802-AL3 800 802.1 3.35 91 36.85 236.62 2216.6 0.0417 55000 2.3x10-5 1255
    1000-AL3 1000 999.7 3.74 91 41.14 294.91 2762.8 0.0334 55000 2.3x10-5 1450
    Note:
    1.The outermost layer is twisted to the right (Z).
    2. The elastic coefficients and expansion coefficients listed in this table are applicable to Germany. The calculation of other conductor structure parameters shall refer to IEC61597.
    3. The flow rate values listed in this table are applicable under the conditions of a frequency of 60HZ, a wind speed of 0.6m/S, sunlight exposure in Germany, an ambient temperature of 35℃, and a conductor temperature of 80℃. In case of special laying conditions, the flow rate values should be reduced if there is no convection Less than 30%.

    Leave Your Message